
School	
 of	
 EEECS	

HPDC	
 Cluster	

Programming	
 the	
 Energy-­‐Efficiency	
 of	

High-­‐Performance	
 Compu;ng	
 Systems	

Professor	
 Dimitrios	
 S.	
 Nikolopoulos	

HPDC	
 Research	
 Cluster,	
 Queen’s	
 University	
 of	
 Belfast	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Points	
 to	
 get	
 across	

•  Waste-­‐free	
 HPC	
 soGware	
 is	

instrumental	
 in	
 the	
 baJle	

against	
 power	

•  Scale-­‐freedom	
 in	
 parallel	

programming	
 is	
 a	
 path	
 to	

energy-­‐efficiency	

•  Energy	
 challenges	
 will	

remind	
 us	
 of	
 the	
 Hydra	

Lernaia	

	

2	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Energy	
 in	
 HPC	

0 50 100 150 200 250 300

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

Papers tagged "Power/Energy/HPC" ACM Digital Library

3	

School	
 of	
 EEECS	

HPDC	
 Cluster	

HPC	
 has	
 lead	
 the	
 way	
 (or	
 not?)	

•  The	
 history	
 of	
 BlueGene	

–  Based	
 on	
 processors	
 for	
 the	
 embedded	
 systems	
 market	
 (PowerPC)	

–  Pioneered	
 “scale-­‐out”	
 idea,	
 now	
 common	
 in	
 datacentres	

•  Many	
 nodes	
 with	
 simple	
 cores,	
 fast	
 interconnect	

–  Dominated	
 Top-­‐500,	
 Green-­‐500	
 list	

•  Embedded	
 processors	
 are	
 now	
 commodity	
 components	

–  Able	
 to	
 power	
 compe;ng	
 supercomputers	
 (e.g.	
 BSC	
 MontBlanc)	

4	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Leader	
 or	
 laggard?	

5	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Leader	
 or	
 laggard?	

•  Is	
 HPC	
 reusing	
 or	

discovering?	

–  Processors	

originally	
 designed	

for	
 the	
 mobile	

phones	
 market	

–  Clock	
 ga;ng,	
 DVFS,	

device	
 sleep	
 states	

well	
 known	
 for	
 20	

years	

6	

School	
 of	
 EEECS	

HPDC	
 Cluster	

What	
 can	
 HPC	
 contribute	
 towards	

zero-­‐power	
 compu:ng?	

7	

School	
 of	
 EEECS	

HPDC	
 Cluster	

The	
 challenge	
 and	
 the	
 opportunity	

•  Assume	
 that	
 currently	
 most	
 energy-­‐efficient	

supercomputer	
 sustains	
 improvement	
 towards	
 an	
 Exaflop	

–  Will	
 need	
 2384×	
 in	
 performance,	
 202.7	
 MW	

•  Assume	
 target	
 power	
 cap	
 of	
 25	
 MW	

–  Need	
 two	
 orders	
 of	
 magnitude	
 improvement	
 in	
 FLOPS/W	

–  Can	
 hardware	
 achieve	
 this	
 improvement	
 without	
 compromising	

the	
 power	
 target?	

–  If	
 systems	
 have	
 any	
 hope	
 to	
 achieve	
 this	
 they	
 must	
 eliminate	

waste	

–  Actual	
 power	
 cap	
 may	
 be	
 lower	
 than	
 nominal	
 power	

consump;on	

–  Opportuni;es	
 for	
 soGware!	

8	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Where	
 can	
 HPC	
 make	
 the	
 difference?	

•  HPC	
 has	
 been	
 leading	
 the	
 way	
 in	
 parallel	
 programming	

technology	

–  Parallel	
 languages,	
 compilers,	
 run;me	
 systems	

•  HPC	
 priori;zes	
 efficiency	
 in	
 programming	

– Minimise	
 communica;on	

–  Balance	
 the	
 load	

–  U;lise	
 available	
 cores	

–  Reduce	
 cache	
 and	
 memory	
 footprint	

•  Waste-­‐free	
 parallel	
 programming	
 is	
 energy-­‐efficient	

–  Opportunity	
 to	
 reduce	
 power	
 consump:on	

–  Opportunity	
 to	
 do	
 more	
 within	
 a	
 power	
 budget	

9	

School	
 of	
 EEECS	

HPDC	
 Cluster	

What	
 can	
 parallel	
 languages	
 and	

run:mes	
 do	
 to	
 reduce	
 waste?	

10	

School	
 of	
 EEECS	

HPDC	
 Cluster	

If	
 parallel	
 programs	
 were	
 scale-­‐free	

•  Power	
 increasing	
 linearly	
 with	

ac;ve	
 cores	

–  Previously	
 dynamic,	
 but	
 now	

also	
 sta;c	
 power	

•  Program	
 speedup	
 lines	
 have	

knees	

–  Synchronisa;on,	
 conten;on	
 for	

resources	
 or	
 the	
 algorithm	
 itself	

–  Energy-­‐efficient	
 programs	

would	
 execute	
 at	
 the	
 beginning	

of	
 the	
 knee	

–  How	
 do	
 we	
 locate	
 the	
 knee?	

	

Cores	

Sp
ee
du

p	

CT	
 opportunity	

CT	
 opportunity	

11	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Exploring	
 the	
 concurrency-­‐power	
 trade-­‐off	

•  Programs	
 execute	
 dis;nct	
 phases	
 	

–  Programmer	
 annotated	
 or	
 auto-­‐

mined	
 from	
 ;me	
 series	
 of	
 HPMs	

–  Compute-­‐,	
 memory-­‐	
 or	

communica;on-­‐bound	

•  Dynamic	
 scalability	
 predictors	

–  Concurrency	
 sweet	
 spot	

detec;on	
 with	
 empirical	

modeling	
 [ICS06]	

–  Rigorous	
 sta;s;cal	
 modeling	

[TPDS08]	

–  Machine	
 learning	
 approaches	

[EuroPar10]	

–  MPI	
 task	
 aggrega;on	
 [IPDPS10]	

Cores	

Sp
ee
du

p	

CT	
 opportunity	

CT	
 opportunity	

12	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Scale-­‐freedom	
 improves	
 energy-­‐efficiency	

Scale-­‐free	
 parallel	
 programs	
 can	
 reduce	
 their	
 power	
 budget	

Scale-­‐free	
 parallel	
 programs	
 adapt	
 to	
 power	
 caps	

13	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Is	
 controlling	
 concurrency	
 enough?	

14	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Beyond	
 scale	
 freedom	

Mul;-­‐objec;ve	

op;miza;on	
 	
 [PACT08]:	

– Control	
 mul;ple	

power	
 knobs	
 at	
 a	
 fine	

granularity	
 (per	
 task,	

in	
 microseconds)	

– Applied	
 to	
 DCT,	
 DVFS	

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61

0

100

200

Processor Performance (P) States [DVFS]

Av
er

ag
e

En
er

gy
 p

er
 T

as
k

[J
ou

le
s]

Processor DVFS Impact on the Average Task Energy [Multisort]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
0

2

4
x 102

Ex
ec

ut
io

n
Ti

m
e

pe
r T

as
k

[m
ic

ro
se

c]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
20

40

60

Processor Performance (P) States [DVFS]

Av
er

ag
e

En
er

gy
 p

er
 T

as
k

[J
ou

le
s]

Processor DVFS Impact on the Average Task Energy [Blackscholes]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
0.5

1

1.5
x 102

Ex
ec

ut
io

n
Ti

m
e

pe
r T

as
k

[m
ic

ro
se

c]

1

3

4

2

15	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Taming	
 locality	
 issues	

Original	
 DCT	
 work	
 failed	
 to	
 capture	
 implica;ons	
 of	
 thread	

migra;on	
 	

Example:	
 Up	
 to	
 45%	
 execu;on	

;me	
 varia;on	
 across	
 85	

mappings	

16,	
 4-­‐core	
 nodes:	
 63	
 million	
 mappings.	

1000,	
 4-­‐core	
 nodes:	
 1043	
 mappings.	

4,	
 4-­‐core	
 nodes:	
 43,680	
 mappings.	

16	

School	
 of	
 EEECS	

HPDC	
 Cluster	

DyNUMA	
 training	
 using	
 ANN	

Op;mize	
 for	
 concurrency,	
 ver;cal	
 and	
 horizontal	
 locality	
 	

	
 [IISWC12,	
 SIGMETRICS	
 PER]	
 17	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Modeling	
 accuracy	

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0

5

10

15

20

25

30

35

Predicted Wall-clock time Measured Wall-clock time
Normalized Prediction

Ti
m

e(
se

co
nd

)

N
or

m
al

iz
ed

 V
al

ue
(%

)

18	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Performance	
 on	
 TilePro64	

•  Tile64Pro	
 OS	
 default	
 Linux	
 mapping	
 is	
 inefficient	
 	

•  More	
 concurrency	
 	
 does	
 not	
 necessary	
 improve	
 performance	
 	

•  Counter-­‐intui;ve	
 mappings	
 op;mize	
 energy-­‐efficiency	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

NPB.FT.1	
 AMG.Relax	
 AMG.Matvec	

N
or
m
al
ize

d	

Ti
m
e,
	
 E
DP

	
 	
 (
%
)	

Wall-­‐clock	
 Time	
 EDP	

19	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Is	
 controlling	
 concurrency,	
 mapping	
 and	

waste	
 at	
 one	
 program	
 level	
 enough?	

	

20	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Energy-­‐Aware	
 Hybrid	
 Programming	

Slack	
 dispersion	
 algorithms	
 [IPDPS10,TPDS13]	

Task	
 i	

Task	
 j	

Task	
 k	

1 2 2 3 1 3 1 2

1 2 2 3 3 1 1 2

1 2 2 3 1 3 1 2

21	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Cri;cal	
 path	
 based	
 modeling	

Predic;ng	
 ;me	
 vs.	
 predic;ng	
 scaling	
 func;on	

ti = min
1≤ thr ≤X⋅Y

ti, j,thr
j=1

M

∑

tc =max1≤i≤N
min

1≤ thr ≤X⋅Y
ti, j,thr

j=1

M

∑

22	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Time	
 modeling	
 enables	
 slack	
 dispersion	

Slack	
 dispersing	
 DCT&DVFS	
 [IPDPS10,TPDS13]	

Use	
 cri;cal	
 path	
 ;me	
 to	
 determine	
 slack	
 (essen;ally	
 imbalance)	

Time	
 constraint:	

Energy	
 constraint:	

Δti
slack = tc − ti − ti

comm − tdvfs

Δtijk ≤ Δti
slack

1≤ j≤M
∑

tijk fk ≤ ti
1≤ j≤M
∑ f0

23	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Performance	
 Evalua;on	

Consistently	
 significant	
 energy	
 savings	
 with	
 weak	
 and	
 strong	
 scaling
24	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Have	
 we	
 solved	
 our	
 problems?	

25	

School	
 of	
 EEECS	

HPDC	
 Cluster	

How	
 much	
 parallelism	
 is	
 (really)	
 there	
 ?	

26	

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

(a) Nested pipelines

lists

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

local
queue

local
queue

write
queue

(b) Positioning of hyperqueues

1 void Fragment(pushdep<chunk t ⇤>write queue) {
2 while(more coarse fragments) {
3 chunk t ⇤ chunk = ...;
4 { // Set up inner pipeline with local queue

5 hyperqueue<chunk t⇤> ⇤ q
6 = new hyperqueue<chunk t ⇤>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ⇤>)⇤q);
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ⇤>)⇤q,
11 (pushdep<chunk t ⇤>)write queue);
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t⇤> write queue;
18 spawn Fragment((pushdep<chunk t⇤>)write queue);
19 spawn Output((popdep<chunk t⇤>)write queue);
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly a↵ects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using

0"

1"

2"

3"

4"

5"

6"

7"

0" 5" 10" 15" 20" 25" 30" 35"

Sp
ee
du

p&

Number&of&cores&

Pthreads" TBB"

Objects" Hyperqueue"

Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.
Note that the hyperqueue enforces dependences across

procedure boundaries. This is an e↵ect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.
Figure 11 shows speedup for dedup in the pthreads, TBB

and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM

xTRSM

xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK

xSYRK

xGEMMxGEMM xGEMM xGEMM xGEMM xGEMM

xGEMM xGEMM xGEMM

xGEMM

Fig. 2. Task graph of tile Cholesky factorization (5⇥ 5 tiles).

and multiGPU systems that can enable applications to fully exploit the power
that each of the hybrid components o↵ers.

4.1 Hybridization of DLA algorithms

We split the computation into sub-tasks and schedule their execution over the
system’s hybrid components. The splitting itself is simple, as it is based on split-
ting BLAS operations. The challenges are choosing the granularity (and shape)
of the splitting and the subsequent scheduling of the sub-tasks. It is desired
that the splitting and scheduling (1) allow for asynchronous execution and load
balance among the hybrid components, and (2) harness the strengths of the com-
ponents of a hybrid architecture by properly matching them to algorithmic/task
requirements. We call this process hybridization of DLA algorithms. We have
developed hybrid algorithms for both one-sided [15, 16] and two-sided factor-
izations [6]. Those implementations have been released in the current MAGMA
library [17]. The task granularity is one of the key for an e�cient and balanced
execution. It is parameterized and tuned empirically at software installation time
[18].

4.2 Scheduling of hybrid DLA algorithms

The scheduling on a parallel machine is crucial for the e�cient execution of an
algorithm. In general, we aim to schedule the execution of the critical path of

©	
 Ltaief	
 et	
 al.,	
 LAPACK	
 Note	
 #223	
 	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Emerging	
 scale-­‐free	
 programming	
 models	

•  Annotate	
 task	
 memory	

footprint	
 and	
 side-­‐effect	

input (rd-only),
inout (rw), output
(wr-only)!

•  Discover	
 task	
 dependences	

at	
 run-­‐;me	

–  dynamically	
 extract	
 task	

parallelism	

–  schedule	
 tasks	
 out-­‐of-­‐order	

–  E.g.	
 “depend”	
 clause	
 in	

OpenMP	
 4.0	
 RC2	
 (March	

2013)	

27	

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xPOTRF

xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM xTRSM

xTRSM xTRSM

xTRSM

xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK xSYRK

xSYRK xSYRK

xSYRK

xGEMMxGEMM xGEMM xGEMM xGEMM xGEMM

xGEMM xGEMM xGEMM

xGEMM

Fig. 2. Task graph of tile Cholesky factorization (5⇥ 5 tiles).

and multiGPU systems that can enable applications to fully exploit the power
that each of the hybrid components o↵ers.

4.1 Hybridization of DLA algorithms

We split the computation into sub-tasks and schedule their execution over the
system’s hybrid components. The splitting itself is simple, as it is based on split-
ting BLAS operations. The challenges are choosing the granularity (and shape)
of the splitting and the subsequent scheduling of the sub-tasks. It is desired
that the splitting and scheduling (1) allow for asynchronous execution and load
balance among the hybrid components, and (2) harness the strengths of the com-
ponents of a hybrid architecture by properly matching them to algorithmic/task
requirements. We call this process hybridization of DLA algorithms. We have
developed hybrid algorithms for both one-sided [15, 16] and two-sided factor-
izations [6]. Those implementations have been released in the current MAGMA
library [17]. The task granularity is one of the key for an e�cient and balanced
execution. It is parameterized and tuned empirically at software installation time
[18].

4.2 Scheduling of hybrid DLA algorithms

The scheduling on a parallel machine is crucial for the e�cient execution of an
algorithm. In general, we aim to schedule the execution of the critical path of

©	
 Ltaief	
 et	
 al.,	
 LAPACK	
 Note	
 #223	
 	

School	
 of	
 EEECS	

HPDC	
 Cluster	

BeJer	
 concurrency	
 control	
 saves	
 energy	

28	

cilities to them for tracking inter-task dependences. Also,
automatic memory management is applied to versioned ob-
jects to break write-after-read dependences. Versioned vari-
ables may be used as procedure arguments provided they are
cast to type indep, outdep or inoutdep, which describes
side e↵ects of reading, writing or both. The spawn keyword
indicates that calling a task may occur in parallel with the
continuation of the calling procedure, as in Cilk. The sync
keyword blocks a procedure until all children have finished
execution. The loop in Figure 1 corresponds to a two-stage
pipeline where instances of the produce stage may execute
in parallel as there are no dependences between those in-
stances, while instances of the consume stage execute strictly
in order due to the dependence on the inoutdep argument.

Task dataflow is an intuitive programming model where
the pipeline pattern emerges on-the-fly as a side-e↵ect of
the code structure, rather than being designed-in. However,
task dataflow has two limitations with respect to pipeline
parallelism: (i) pipelines must be su�ciently coarse-grained
as every stage invocation is modeled as a separately sched-
uled task, and (ii) each pipeline stage consumes a fixed num-
ber of elements from its predecessor and produces a fixed
number of output elements [6]. This paper will address
both shortcomings by introducing hyperqueues, a program-
ming abstraction of queues for a task based programming
language. Hyperqueues are deterministic and allow the con-
struction of scale-free pipeline parallel programs.

Hyperqueues share commonalities with Cilk++ hyperob-
jects, specifically with reducers [9]. Reducers are special pro-
gram variables that support reduction operations, i.e., they
are identified by a type, an identity element and an asso-
ciative reduction operation. A common example is addition
over integers, but also appending to a list is an associative
operation. The latter was, in fact, the main motivation for
the development of reducers [9]. Reduction operations can
be parallelized by creating duplicates of the reduction vari-
able, called views, which are private to a task. As views are
private, they are accessed without races. When tasks com-
plete, the views are reduced to a single value in such a way
that program order is respected. Moreover, Cilk++ uses a
“special” optimization to reduce views only on task steals, as
opposed to on all spawned tasks. Hyperqueues build on this
property of reducers to perform push operations in parallel
while retaining determinism.

However, hyperqueues also allow concurrent push and pop
operations and are di↵erent in this respect from Cilk++
hyperobjects. To support this behavior, hyperqueues require
a distinct implementation. Views are no longer private but
are shared between a producing task and a consuming task.
This paper shows how to design shared views that are data
race free and how to ensure deterministic parallelism for
programs utilizing hyperqueues.

Using hyperqueues, we parallelize several benchmarks with
less programming e↵ort than using POSIX threads or Thread-
ing Building Blocks (TBB) because synchronization is hid-
den in the runtime system and because the programming
language does not impose a stringent format, as TBB does.
Moreover, the hyperqueue version is scale-free and obtains
the same or up to 30% better performance. It also out-
performs task dataflow languages like [6] because the latter
cannot capture varying numbers of inputs and outputs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the programming model. Section 3 discusses

1 struct data { ... };
2 void consumer(popdep<data> queue) {
3 while(!queue.empty()) {
4 data d = queue.pop();
5 // ... operate on data ...

6 }
7 }
8 void producer(pushdep<data> queue, int start, int end) {
9 if (end�start <= 10) {

10 for(int n=start; n < end; ++n) {
11 data d = f(n);
12 queue.push(d);
13 }
14 } else {
15 spawn producer(queue, start , (start +end)/2);
16 spawn producer(queue, (start+end)/2, end);
17 sync;
18 }
19 }
20 void pipeline (int total) {
21 hyperqueue<data> queue;
22 spawn producer((pushdep<data>)queue, 0, total);
23 spawn consumer((popdep<data>)queue);
24 sync;
25 }
Figure 2: The simple pipeline-parallel program of
Figure 1 expressed with the hyperqueue.

the internal representation of hyperqueues in the runtime
system and views. Section 4 discusses how the runtime sys-
tem merges views. Then, Section 5 presents programming
idioms. We present an experimental evaluation in Section 6.
Finally, Section 7 discusses related work and Section 8 con-
cludes this paper.

2. PROGRAMMING MODEL

2.1 The Hyperqueue Abstraction of Queues
Hyperqueues are a programming abstraction for queues.

A queue is an ordered sequence of values. Values are added
to the tail of the sequence using a push method. Values are
removed from the head of the sequence using a pop method.
We define a hyperqueue as a special object in our pro-

gramming language that models a single-producer, single-
consumer queue. Its implementation allows tasks to concur-
rently push and pop values without breaking the semantics
of a single-producer, single-consumer queue, and without
breaking the serializability of the parallel program.
Hyperqueues are defined as variables of type hyperqueue,

which takes a type parameter to describe the type of the val-
ues stored in the queue. Hyperqueues may be passed to pro-
cedures provided they are cast to a type that describes the
access mode of the procedure. This type can be pushdep,
popdep or pushpopdep, to indicate that the spawned pro-
cedure may only push values on the queue, that it may only
pop values from the queue, or that it may do both. A task
with push access mode is not required to push any values,
nor is a task with pop access mode required to pop all val-
ues from the queue. A hyperqueue may be destroyed with
values still inside.
A simple 2-stage pipeline using the hyperqueue is shown in

Figure 2. The procedure pipeline at line 20 creates a hyper-

Swan	
 [PACT11]	
 Hyperqueues	
 express	

and	
 control	
 data-­‐dependent	
 parallelism	

in	
 variable-­‐rate	
 pipelines	
 [SC13]	

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

(a) Nested pipelines

lists

ref frag ddup cmp out

ddup cmp out

ddup cmp out

ref ddup cmp out

ddup cmp out

local
queue

local
queue

write
queue

(b) Positioning of hyperqueues

1 void Fragment(pushdep<chunk t ⇤>write queue) {
2 while(more coarse fragments) {
3 chunk t ⇤ chunk = ...;
4 { // Set up inner pipeline with local queue

5 hyperqueue<chunk t⇤> ⇤ q
6 = new hyperqueue<chunk t ⇤>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ⇤>)⇤q);
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ⇤>)⇤q,
11 (pushdep<chunk t ⇤>)write queue);
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t⇤> write queue;
18 spawn Fragment((pushdep<chunk t⇤>)write queue);
19 spawn Output((popdep<chunk t⇤>)write queue);
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly a↵ects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using

0"

1"

2"

3"

4"

5"

6"

7"

0" 5" 10" 15" 20" 25" 30" 35"

Sp
ee
du

p&

Number&of&cores&

Pthreads" TBB"

Objects" Hyperqueue"

Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.
Note that the hyperqueue enforces dependences across

procedure boundaries. This is an e↵ect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.
Figure 11 shows speedup for dedup in the pthreads, TBB

and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.

School	
 of	
 EEECS	

HPDC	
 Cluster	

Task	
 dataflow	
 and	
 locality	

•  Rich	
 seman;c	
 informa;on	
 available	
 to	
 the	

compiler	
 and	
 run;me	
 system	

– DAG,	
 program	
 order	
 for	
 correctness	
 and	

determinism,	
 task	
 memory	
 footprints	
 for	
 locality	

•  Opportunity	
 to	
 make	
 memory	
 system	
 aware	

of	
 working	
 sets	

– Run;me	
 explicitly	
 manages	
 the	
 memory	
 hierarchy	

by	
 placing	
 task	
 footprints	
 in	
 caches	

29	

School	
 of	
 EEECS	

HPDC	
 Cluster	

	
 Overlooking	
 the	
 memory	
 hierarchy	

30	

Experimental Setup
Microbenchmarks

Bottomline
Conclusions

Methodology
Microbenchmarks
Comparison
Access Stride

Results - L3 Cache Sensitive Kernels

6/0 6/1 6/2 6/3 6/4 6/5 6/6 5/6 4/6 3/6 2/6 1/6 0/6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−9 Energy Per Instruction for Various Operational Intensities

Operational Intensity (Byte / Arithmetic)

D
yn

a
m

ic
 E

n
e

rg
y

p
e

r
In

st
ru

ct
io

n
 (

J/
I)

CPU
Cache

Figure: EPI while traversing OI of a
L3 Cache sensitive workload.

Observations
1 OI Counts L3 accesses

instead of memory ones.

2 L3 accesses also degrade
energy e�ciency for high OI.

3 Cache Hierarcy consumes up
to 50% of the total
energy.

Ioannis Manousakis and Dimitrios S. Nikolopoulos Measuring and Modeling Energy with BTL

[SBAC-­‐PAD’12]	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Overlooking	
 the	
 memory	
 hierarchy	

31	

Experimental Setup
Microbenchmarks

Bottomline
Conclusions

Methodology
Microbenchmarks
Comparison
Access Stride

Results - Comparison

Workload OI EPI Against L3

L3 High 3.9⇥�9 1
Throughput High 1.18⇥�8 3.02
Latency High 5.8⇥�8 14.9

L3 Low 2.4⇥�9 1
Throughput Low 4.0⇥�9 1.6
Latency Low 3.6⇥�8 15

Table: EPI comparison of throughput, latency and L3 sensitive workloads.

Ioannis Manousakis and Dimitrios S. Nikolopoulos Measuring and Modeling Energy with BTL

School	
 of	
 EEECS	

HPDC	
 Cluster	

Cache	
 management	
 using	
 task	
 life;mes	

32	

curr?

+ +

= next?=

Tags Data Tags Data Tags Data Tags Data

Epoch
Address

3

2

1

Curr. Epoch

Curr. Quota

Next Quota

ECM
Replacement

Decisions

•  Epoch	
 quotas:	
 cache	
 space	
 alloca;on	
 per	
 task	
 (best-­‐effort)	

–  SW	
 declares	
 quota	
 from	
 task	
 footprint	
 size	
 (ECM	
 converts	
 to	
 ways)	

–  when	
 current	
 and	
 next	
 compete	
 è	
 guarantee	
 minimum	
 alloca;on	

•  Replacement:	
 computes	
 current	
 &	
 next	
 occupancy	
 (per-­‐set)	

–  replace	
 from	
 reques;ng	
 epoch	
 when	
 set	
 is	
 full	
 (e.g.	
 use	
 LRU	
 bits)	

–  throJle	
 EBP	
 (prefetching)	
 when	
 set	
 is	
 full	
 and	
 epoch	
 exceeded	
 quota.	

[ICS13]	

School	
 of	
 EEECS	

HPDC	
 Cluster	

BeJer	
 locality	
 cuts	
 down	
 energy	
 consump;on	

33	

Jacobi,	
 Sparse-­‐LU:	
 memory-­‐intensive	
 codes,	
 medium	
 or	
 low	
 OI	

Energy	
 savings	
 of	
 20%-­‐30%	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Should	
 the	
 programmer	
 care	
 about	

energy-­‐efficiency?	

34	

Joe	
 the	
 Plumber	

Green	
 Programmer	

School	
 of	
 EEECS	

HPDC	
 Cluster	

	
 Energy	
 and	
 the	
 programmer	

•  Should	
 programmers	
 go	
 back	
 to	
 half	
 a	
 century-­‐-­‐old	

principles?	

–  Eliminate	
 waste	

–  Much	
 of	
 the	
 programming	
 we	
 do	
 already	
 does	
 this	

•  Load	
 balancing	

•  Communica;on	
 or	
 synchroniza;on	
 removal	

•  	
 Scale-­‐free	
 programming	
 models	
 can	
 help	
 programmers	

achieve	
 this	

–  Programmer	
 expresses	
 exact	
 parallelism	
 and	
 locality	
 paJerns	

–  Run;me	
 system	
 maps	
 to	
 cores,	
 memories	
 and	
 interconnect	
 so	

as	
 to	
 avoid	
 waste	

–  Component-­‐level	
 power	
 management	
 further	
 minimizes	
 waste	

35	

School	
 of	
 EEECS	

HPDC	
 Cluster	

The	
 “Lernaia	
 Hydra”	

•  Power	
 instrumenta;on	
 	
 is	
 inaccurate,	
 intrusive,	
 coarse-­‐grain,…	

–  SoGware	
 is	
 at	
 the	
 mercy	
 of	
 hardware	
 (PMCs,	
 sensors,	
 voltage	

regulators,	
 everything	
 machine-­‐specific,…)	

•  No	
 soGware	
 standards	
 for	
 power	
 measurement	
 and	
 management	

–  How	
 would	
 power	
 knobs	
 make	
 it	
 into	
 MPI,	
 OpenMP,	
 Cilk,	
 PGAS,	
 or	

even	
 mainstream	
 languages?	

•  What	
 if	
 a	
 power	
 cap	
 is	
 imposed?	

–  And	
 violated?	

•  Riding	
 the	
 technology	
 curve	
 is	
 dangerous	

–  Low	
 voltage	
 may	
 become	
 sub-­‐threshold	
 voltage	

–  Subthreshold	
 voltage	
 will	
 increase	
 soG	
 error	
 rate	

–  SoG	
 errors	
 will	
 cause	
 failures	

36	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Looking	
 forward:	
 SCoRPiO	
 project	

•  Compu;ng	
 at	
 the	

limits	
 of	
 energy	
 and	

reliability	

–  Components	
 with	
 sub-­‐

threshold	
 voltage	
 	

•  Embrace	
 uncertainty!	

–  Not	
 all	
 bits	
 in	
 memory	

and	
 registers	
 are	
 equally	

cri;cal	
 	

–  Applica;on-­‐specific	

quality	
 control	

•  Minimize	
 power	
 by	

scaling	
 gracefully	

under	
 hardware	
 errors	
 	

–  Scale-­‐free	
 parallel	

programming	

	

37	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Acknowledgments	

38	

School	
 of	
 EEECS	

HPDC	
 Cluster	

Our	
 resources	

39	

School	
 of	
 EEECS	

HPDC	
 Cluster	

More	
 informa;on	

hJp://www.qub.ac.uk/research-­‐centres/HPDC/	
 	

40	

School	
 of	
 EEECS	

HPDC	
 Cluster	

BlueGene	
 on	
 the	
 Green500	

0

500

1000

1500

2000

2500

3000

N
ov

-0
7

Ja
n-

08

M
ar

-0
8

M
ay

-0
8

Ju
l-0

8

S
ep

-0
8

N
ov

-0
8

Ja
n-

09

M
ar

-0
9

M
ay

-0
9

Ju
l-0

9

S
ep

-0
9

N
ov

-0
9

Ja
n-

10

M
ar

-1
0

M
ay

-1
0

Ju
l-1

0

S
ep

-1
0

N
ov

-1
0

Ja
n-

11

M
ar

-1
1

M
ay

-1
1

Ju
l-1

1

S
ep

-1
1

N
ov

-1
1

Ja
n-

12

M
ar

-1
2

M
ay

-1
2

Ju
l-1

2

S
ep

-1
2

N
ov

-1
2

M
FL

O
PS

 p
er

 W
at

t

BlueGene and the Green-500 List

BlueGene/L-P-Q

Peak Green-500

41	

