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Waste-free HPC software is
instrumental in the battle
against power

Scale-freedom in parallel
programming is a path to
energy-efficiency

Energy challenges will

remind us of the Hydra
Lernaia
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Energy in HPC
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HPC has lead the way (or not?)

* The history of BlueGene
— Based on processors for the embedded systems market (PowerPC)

— Pioneered “scale-out” idea, now common in datacentres
* Many nodes with simple cores, fast interconnect

— Dominated Top-500, Green-500 list

* Embedded processors are now commodity components
— Able to power competing supercomputers (e.g. BSC MontBlanc)
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Leader or laggard?
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der or laggard?
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The challenge and the opportunity

* Assume that currently most energy-efficient
supercomputer sustains improvement towards an Exaflop

Will need 2384x in performance, 202.7 MW

 Assume target power cap of 25 MW

Need two orders of magnitude improvement in FLOPS/W

Can hardware achieve this improvement without compromising
the power target?

If systems have any hope to achieve this they must eliminate
waste

Actual power cap may be lower than nominal power
consumption

Opportunities for software!
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Where can HPC make the difference?

* HPC has been leading the way in parallel programming
technology

— Parallel languages, compilers, runtime systems
 HPC prioritizes efficiency in programming
— Minimise communication
— Balance the load
— Utilise available cores
— Reduce cache and memory footprint
 Waste-free parallel programming is energy-efficient
— Opportunity to reduce power consumption
— Opportunity to do more within a power budget
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What can parallel languages and
runtimes do to reduce waste?
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If parallel programs were scale-free

CT opportunity

* Power increasing linearly with ¢
active cores CT opporfunity
— Previously dynamic, but now B
also static power
* Program speedup lines have
knees

— Synchronisation, contention for
resources or the algorithm itself >

— Energy-efficient programs Cores
would execute at the beginning
of the knee

— How do we locate the knee?

Speedup

11
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Exploring the concurrency-power trade-off

* Programs execute distinct phases

— Programmer annotated or auto-
mined from time series of HPMs 'T‘

— Compute-, memory- or CT opporfunity
communication-bound

CT opportunity

G

* Dynamic scalability predictors

— Concurrency sweet spot
detection with empirical
modeling [ICS06]

— Rigorous statistical modeling
[TPDS08]

— Machine learning approaches c
[EuroParl0] Ores

— MPI task aggregation [IPDPS10]

Speedup

12
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Scale-freedom improves energy-efficiency
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Scale-free parallel programs can reduce their power budget

Scale-free parallel programs adapt to power caps
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Is controlling concurrency enough?

14
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Beyond scale freedom

Multi-objective
Processor DVFS Impact on the Average Task Energy [Multisort] X 10°
optimization [PACTOS]: T .|

-----

— Control multiple
power knobs at a fine
granularity (per task,
in microseconds) ¢ |7 ———————

— A p p I i e d to D CT’ DV F S Processor Performance (P) States [DVFSI

100 |

Average Energy per Task [Joules]
A} Z
\
\
\
|
\
\
\
\
o
Execution Time per Task [microsec]
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Taming locality issues

Original DCT work failed to capture implications of thread

migration
S| | mm | | mm| |5
@) 0]
1 E mE @ mm O3
> Cores Cores >
S -¢- -¢- =
(@) fD
2|t EmE @ Em O3
= Cores Cores =
NUMA

4, 4-core nodes: 43,680 mappings.

16, 4-core nodes: 63 million mappings.
1000, 4-core nodes: 10*3 mappings.

4

Example: Up to 45% execution
time variation across 85
mappings

16
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DYNUMA training using ANN

Input Layer | Internal Output

layers | Layer
(IPC, LMA, I
Output
Output
*
L J
Execution ———
Signatures
Mapping .
Info .
) :
] *
*
*
o 7 Output
L “
<Tho: emo
Sorrtvoller arget Outputs [1-16]
e ] /= ) |

Optimize for concurrency, vertical and horizontal locality
[1ISWC12, SIGMETRICS PER]
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Performance on TilePro64
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* Tile64Pro OS default Linux mapping is inefficient
* More concurrency does not necessary improve performance

e Counter-intuitive mappings optimize energy-efficiency
19
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Is controlling concurrency, mapping and
waste at one program level enough?

20



@ Shuorts University School of EEECS
HPDC Cluster

Energy-Aware Hybrid Programming

2 | 2 3 3 1 [ 2 Task |
1 2 2 3 3 1 1 A Task k

Slack dispersion algorithms [IPDPS10,TPDS13]

21
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Critical path based modeling

Predicting time vs. predicting scaling function

[.=max » min f,
l<isN 4 1 ls|thr|sX Y
]=

22
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Time modeling enables slack dispersion

Slack dispersing DCT&DVES [IPDPS10,TPDS13]

Use critical path time to determine slack (essentially imbalance)

slack comm
At = tc o ti o ti o tdvfs

l

Time constraint:

slack
Y Aty <A

l=sj=M
Energy constraint:

N tufistfy
l=sj=M

23
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Have we solved our problems?

25
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How much parallelism is (really) there ?

(a) Nested pipelines

© Ltaief et al., LAPACK Note #223 26
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Emerging scale-free programming models

* Annotate task memory
footprint and side-effect
input (rd-only),
inout (rw), output
(wr-only)
* Discover task dependences
at run-time

— dynamically extract task
parallelism

— schedule tasks out-of-order

— E.g. “depend” clause in
OpenMP 4.0 RC2 (March
2013)

© Ltaief et al., LAPACK Note #223 27
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Better concurrency control saves energy

1 struct data { ... };
2 void consumer(popdep<data> queue) {

Swan [PACT11] Hyperqueues express

3 while( !queue.empty() ) {
4 data d = queue.pop(); .
5 /) operate on o . and control data-dependent parallelism
7 } L L L] L]
8 void producer(pushdep<data> queue, int start, int end) { In Va rla ble-rate pl pe I I nes [SC13]
9 if ( end—start <=10) {
10 for( int n=start; n < end; ++n ) {
11 data d = f(n);
12 queue.push(d);
13
14 } else {
15 spawn producer(queue, start, (start-+end)/2);
16 spawn producer(queue, (start+end)/2, end); 7
17 sync;
18
19 } 6
20 void pipeline (int total) {
21 hyperqueue<data> queue;
22 spawn producer((pushdep<data>)queue, 0, total); 5
23 spawn consumer((popdep<data>)queue); o
24 sync; = 4
25 } b
23

2 —>*—Pthreads TBB

1 ——Qbjects —+—Hyperqueue

0

0 5 10 15 20 25 30 35

Number of cores

28
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Task dataflow and locality

* Rich semantic information available to the
compiler and runtime system

— DAG, program order for correctness and
determinism, task memory footprints for locality

* Opportunity to make memory system aware
of working sets

— Runtime explicitly manages the memory hierarchy
by placing task footprints in caches

29
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Overlooking the memory hierarchy

[SBAC-PAD’12]

© Ol Counts L3 accesses
instead of memory ones.

© L3 accesses also degrade
energy efficiency for high Ol.

Dynamic Energy per Instruction (J/1)

© Cache Hierarcy consumes up

6/0 6/1 6/2 6/3 6/4 6/5 6/6 5/6 4/6 3/6 2/6 1/6 0/6

Operational Intensity (Byte / Arithmetic) to 5 O % of t h e tota I

Figure: EPI while traversing Ol of a energy.- )

L3 Cache sensitive workload.

30
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Overlooking the memory hierarchy

Workload Ol EPI Against L3
L3 High | 3.9x7° 1
Throughput | High | 1.18x 8 3.02
Latency | High | 5.8x 8 14.9
L3 Low | 2.4x7° 1
Throughput | Low | 4.0x~° 1.6
Latency Low | 3.6x8 15

Table: EPI comparison of throughput, latency and L3 sensitive workloads.

31



Queen's University
Belfast

School of EEECS
HPDC Cluster

Cache management using task lifetimes

Address
Epoch

Tags Data Tags Data

[ICS13]

Tags

Tags Data

Curr. Epoch[ 3 }——+] EoM
Curr. Quota[ 2 |———— Replacement
Next Quota Decisions

t

curr?

+

next?

* Epoch quotas: cache space allocation per task (best-effort)
— SW declares quota from task footprint size (ECM converts to ways)
— when current and next compete =» guarantee minimum allocation
* Replacement: computes current & next occupancy (per-set)
— replace from requesting epoch when set is full (e.g. use LRU bits)

— throttle EBP (prefetching) when set is full and epoch exceeded quota.

32
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Better locality cuts down energy consumption

Jacobi Sparse LU
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Configurations Configurations

Jacobi, Sparse-LU: memory-intensive codes, medium or low Ol
Energy savings of 20%-30%
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Joe the Plumber
Green Programmer

Should the programmer care about
energy-efficiency?

34
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Energy and the programmer

* Should programmers go back to half a century--old
principles?
— Eliminate waste
— Much of the programming we do already does this

* Load balancing
 Communication or synchronization removal

e Scale-free programming models can help programmers
achieve this
— Programmer expresses exact parallelism and locality patterns

— Runtime system maps to cores, memories and interconnect so
as to avoid waste
— Component-level power management further minimizes waste

35
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The “Lernaia Hydra”

* Power instrumentation is inaccurate, intrusive, coarse-grain,...

— Software is at the mercy of hardware (PMCs, sensors, voltage
regulators, everything machine-specific,...)

* No software standards for power measurement and management

— How would power knobs make it into MPI, OpenMP, Cilk, PGAS, or
even mainstream languages?

 What if a power cap is imposed?
— And violated?

* Riding the technology curve is dangerous
— Low voltage may become sub-threshold voltage
— Subthreshold voltage will increase soft error rate
— Soft errors will cause failures

36
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Looking forward: SCoRPiO project

Computing at the
limits of energy and
reliability

— Components with sub-
threshold voltage

SCoRPi0

Significance-Based Computing for
Reliability and Power Optimization

VISION & OUTLINE CONSORTIUM RESULTS CONTACT

Embrace uncertainty!

— Not all bits in memory
and registers are equally SCoRPi0
critical

— Application-specific ‘
guality control

Power Savings
" N oW A

aaaaaaaaaaaaaaaaaaaa se

,even in the presencé of hardware faults

Minimize power by
scaling gracefully
under hardware errors

— Scale-free parallel

programming *
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More information

http://www.gub.ac.uk/research-centres/HPDC/
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BlueGene on the Green500

BlueGene and the Green-500 List
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