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Points	
  to	
  get	
  across	
  

•  Waste-­‐free	
  HPC	
  soGware	
  is	
  
instrumental	
  in	
  the	
  baJle	
  
against	
  power	
  

•  Scale-­‐freedom	
  in	
  parallel	
  
programming	
  is	
  a	
  path	
  to	
  
energy-­‐efficiency	
  

•  Energy	
  challenges	
  will	
  
remind	
  us	
  of	
  the	
  Hydra	
  
Lernaia	
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Energy	
  in	
  HPC	
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HPC	
  has	
  lead	
  the	
  way	
  (or	
  not?)	
  

•  The	
  history	
  of	
  BlueGene	
  
–  Based	
  on	
  processors	
  for	
  the	
  embedded	
  systems	
  market	
  (PowerPC)	
  
–  Pioneered	
  “scale-­‐out”	
  idea,	
  now	
  common	
  in	
  datacentres	
  

•  Many	
  nodes	
  with	
  simple	
  cores,	
  fast	
  interconnect	
  
–  Dominated	
  Top-­‐500,	
  Green-­‐500	
  list	
  

•  Embedded	
  processors	
  are	
  now	
  commodity	
  components	
  
–  Able	
  to	
  power	
  compe;ng	
  supercomputers	
  (e.g.	
  BSC	
  MontBlanc)	
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Leader	
  or	
  laggard?	
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Leader	
  or	
  laggard?	
  

•  Is	
  HPC	
  reusing	
  or	
  
discovering?	
  
–  Processors	
  
originally	
  designed	
  
for	
  the	
  mobile	
  
phones	
  market	
  

–  Clock	
  ga;ng,	
  DVFS,	
  
device	
  sleep	
  states	
  
well	
  known	
  for	
  20	
  
years	
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What	
  can	
  HPC	
  contribute	
  towards	
  
zero-­‐power	
  compu:ng?	
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The	
  challenge	
  and	
  the	
  opportunity	
  
•  Assume	
  that	
  currently	
  most	
  energy-­‐efficient	
  

supercomputer	
  sustains	
  improvement	
  towards	
  an	
  Exaflop	
  
–  Will	
  need	
  2384×	
  in	
  performance,	
  202.7	
  MW	
  

•  Assume	
  target	
  power	
  cap	
  of	
  25	
  MW	
  
–  Need	
  two	
  orders	
  of	
  magnitude	
  improvement	
  in	
  FLOPS/W	
  
–  Can	
  hardware	
  achieve	
  this	
  improvement	
  without	
  compromising	
  
the	
  power	
  target?	
  

–  If	
  systems	
  have	
  any	
  hope	
  to	
  achieve	
  this	
  they	
  must	
  eliminate	
  
waste	
  

–  Actual	
  power	
  cap	
  may	
  be	
  lower	
  than	
  nominal	
  power	
  
consump;on	
  

–  Opportuni;es	
  for	
  soGware!	
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Where	
  can	
  HPC	
  make	
  the	
  difference?	
  

•  HPC	
  has	
  been	
  leading	
  the	
  way	
  in	
  parallel	
  programming	
  
technology	
  
–  Parallel	
  languages,	
  compilers,	
  run;me	
  systems	
  

•  HPC	
  priori;zes	
  efficiency	
  in	
  programming	
  
– Minimise	
  communica;on	
  
–  Balance	
  the	
  load	
  
–  U;lise	
  available	
  cores	
  
–  Reduce	
  cache	
  and	
  memory	
  footprint	
  

•  Waste-­‐free	
  parallel	
  programming	
  is	
  energy-­‐efficient	
  
–  Opportunity	
  to	
  reduce	
  power	
  consump:on	
  
–  Opportunity	
  to	
  do	
  more	
  within	
  a	
  power	
  budget	
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What	
  can	
  parallel	
  languages	
  and	
  
run:mes	
  do	
  to	
  reduce	
  waste?	
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If	
  parallel	
  programs	
  were	
  scale-­‐free	
  
•  Power	
  increasing	
  linearly	
  with	
  

ac;ve	
  cores	
  
–  Previously	
  dynamic,	
  but	
  now	
  
also	
  sta;c	
  power	
  

•  Program	
  speedup	
  lines	
  have	
  
knees	
  
–  Synchronisa;on,	
  conten;on	
  for	
  
resources	
  or	
  the	
  algorithm	
  itself	
  

–  Energy-­‐efficient	
  programs	
  
would	
  execute	
  at	
  the	
  beginning	
  
of	
  the	
  knee	
  

–  How	
  do	
  we	
  locate	
  the	
  knee?	
  
	
  

Cores	
  

Sp
ee
du

p	
  

CT	
  opportunity	
  

CT	
  opportunity	
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Exploring	
  the	
  concurrency-­‐power	
  trade-­‐off	
  

•  Programs	
  execute	
  dis;nct	
  phases	
  	
  
–  Programmer	
  annotated	
  or	
  auto-­‐

mined	
  from	
  ;me	
  series	
  of	
  HPMs	
  
–  Compute-­‐,	
  memory-­‐	
  or	
  

communica;on-­‐bound	
  

•  Dynamic	
  scalability	
  predictors	
  
–  Concurrency	
  sweet	
  spot	
  

detec;on	
  with	
  empirical	
  
modeling	
  [ICS06]	
  

–  Rigorous	
  sta;s;cal	
  modeling	
  
[TPDS08]	
  

–  Machine	
  learning	
  approaches	
  
[EuroPar10]	
  

–  MPI	
  task	
  aggrega;on	
  [IPDPS10]	
  

Cores	
  
Sp
ee
du

p	
  

CT	
  opportunity	
  

CT	
  opportunity	
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Scale-­‐freedom	
  improves	
  energy-­‐efficiency	
  
Scale-­‐free	
  parallel	
  programs	
  can	
  reduce	
  their	
  power	
  budget	
  
Scale-­‐free	
  parallel	
  programs	
  adapt	
  to	
  power	
  caps	
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Is	
  controlling	
  concurrency	
  enough?	
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Beyond	
  scale	
  freedom	
  

Mul;-­‐objec;ve	
  
op;miza;on	
  	
  [PACT08]:	
  

– Control	
  mul;ple	
  
power	
  knobs	
  at	
  a	
  fine	
  
granularity	
  (per	
  task,	
  
in	
  microseconds)	
  

– Applied	
  to	
  DCT,	
  DVFS	
  
1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61

0

100

200

Processor Performance (P) States [DVFS]

Av
er

ag
e 

En
er

gy
 p

er
 T

as
k 

[J
ou

le
s]

Processor DVFS Impact on the Average Task Energy [Multisort]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
0

2

4
x 102

Ex
ec

ut
io

n 
Ti

m
e 

pe
r T

as
k 

[m
ic

ro
se

c]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
20

40

60

Processor Performance (P) States [DVFS]

Av
er

ag
e 

En
er

gy
 p

er
 T

as
k 

[J
ou

le
s]

Processor DVFS Impact on the Average Task Energy [Blackscholes]

1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.63.61
0.5

1

1.5
x 102

Ex
ec

ut
io

n 
Ti

m
e 

pe
r T

as
k 

[m
ic

ro
se

c]

1

3

4

2

15	
  



School	
  of	
  EEECS	
  
HPDC	
  Cluster	
  

Taming	
  locality	
  issues	
  
Original	
  DCT	
  work	
  failed	
  to	
  capture	
  implica;ons	
  of	
  thread	
  
migra;on	
  	
  

Example:	
  Up	
  to	
  45%	
  execu;on	
  
;me	
  varia;on	
  across	
  85	
  
mappings	
  

16,	
  4-­‐core	
  nodes:	
  63	
  million	
  mappings.	
  
1000,	
  4-­‐core	
  nodes:	
  1043	
  mappings.	
  

4,	
  4-­‐core	
  nodes:	
  43,680	
  mappings.	
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DyNUMA	
  training	
  using	
  ANN	
  

Op;mize	
  for	
  concurrency,	
  ver;cal	
  and	
  horizontal	
  locality	
  	
  
	
  [IISWC12,	
  SIGMETRICS	
  PER]	
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Modeling	
  accuracy	
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Performance	
  on	
  TilePro64	
  

•  Tile64Pro	
  OS	
  default	
  Linux	
  mapping	
  is	
  inefficient	
  	
  
•  More	
  concurrency	
  	
  does	
  not	
  necessary	
  improve	
  performance	
  	
  
•  Counter-­‐intui;ve	
  mappings	
  op;mize	
  energy-­‐efficiency	
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Is	
  controlling	
  concurrency,	
  mapping	
  and	
  
waste	
  at	
  one	
  program	
  level	
  enough?	
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Energy-­‐Aware	
  Hybrid	
  Programming	
  

Slack	
  dispersion	
  algorithms	
  [IPDPS10,TPDS13]	
  

Task	
  i	
  

Task	
  j	
  

Task	
  k	
  

1 2 2 3 1 3 1 2 

1 2 2 3 3 1 1 2 

1 2 2 3 1 3 1 2 
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Cri;cal	
  path	
  based	
  modeling	
  

Predic;ng	
  ;me	
  vs.	
  predic;ng	
  scaling	
  func;on	
  

ti = min
1≤ thr ≤X⋅Y

ti, j,thr
j=1

M

∑

tc =max1≤i≤N
min

1≤ thr ≤X⋅Y
ti, j,thr

j=1

M

∑

22	
  



School	
  of	
  EEECS	
  
HPDC	
  Cluster	
  

Time	
  modeling	
  enables	
  slack	
  dispersion	
  

Slack	
  dispersing	
  DCT&DVFS	
  [IPDPS10,TPDS13]	
  

Use	
  cri;cal	
  path	
  ;me	
  to	
  determine	
  slack	
  (essen;ally	
  imbalance)	
  

Time	
  constraint:	
  

Energy	
  constraint:	
  

Δti
slack = tc − ti − ti

comm − tdvfs

Δtijk ≤ Δti
slack

1≤ j≤M
∑

tijk fk ≤ ti
1≤ j≤M
∑ f0
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Performance	
  Evalua;on	
  

Consistently	
  significant	
  energy	
  savings	
  with	
  weak	
  and	
  strong	
  scaling 
24	
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Have	
  we	
  solved	
  our	
  problems?	
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How	
  much	
  parallelism	
  is	
  (really)	
  there	
  ?	
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ref frag ddup cmp out 

ddup cmp out 

ddup cmp out 

ref ddup cmp out 

ddup cmp out 

(a) Nested pipelines 

lists 

ref frag ddup cmp out 

ddup cmp out 

ddup cmp out 

ref ddup cmp out 

ddup cmp out 

local 
queue 

local 
queue 

write 
queue 

(b) Positioning of hyperqueues 

1 void Fragment( pushdep<chunk t ⇤>write queue ) {
2 while( more coarse fragments ) {
3 chunk t ⇤ chunk = ...;
4 { // Set up inner pipeline with local queue

5 hyperqueue<chunk t⇤> ⇤ q
6 = new hyperqueue<chunk t ⇤>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ⇤>)⇤q );
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ⇤>)⇤q,
11 (pushdep<chunk t ⇤>)write queue );
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t⇤> write queue;
18 spawn Fragment( (pushdep<chunk t⇤>)write queue );
19 spawn Output( (popdep<chunk t⇤>)write queue );
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly a↵ects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using

0"

1"

2"

3"

4"

5"

6"

7"

0" 5" 10" 15" 20" 25" 30" 35"

Sp
ee
du

p&

Number&of&cores&

Pthreads" TBB"

Objects" Hyperqueue"

Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.
Note that the hyperqueue enforces dependences across

procedure boundaries. This is an e↵ect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.
Figure 11 shows speedup for dedup in the pthreads, TBB

and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.
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Fig. 2. Task graph of tile Cholesky factorization (5⇥ 5 tiles).

and multiGPU systems that can enable applications to fully exploit the power
that each of the hybrid components o↵ers.

4.1 Hybridization of DLA algorithms

We split the computation into sub-tasks and schedule their execution over the
system’s hybrid components. The splitting itself is simple, as it is based on split-
ting BLAS operations. The challenges are choosing the granularity (and shape)
of the splitting and the subsequent scheduling of the sub-tasks. It is desired
that the splitting and scheduling (1) allow for asynchronous execution and load
balance among the hybrid components, and (2) harness the strengths of the com-
ponents of a hybrid architecture by properly matching them to algorithmic/task
requirements. We call this process hybridization of DLA algorithms. We have
developed hybrid algorithms for both one-sided [15, 16] and two-sided factor-
izations [6]. Those implementations have been released in the current MAGMA
library [17]. The task granularity is one of the key for an e�cient and balanced
execution. It is parameterized and tuned empirically at software installation time
[18].

4.2 Scheduling of hybrid DLA algorithms

The scheduling on a parallel machine is crucial for the e�cient execution of an
algorithm. In general, we aim to schedule the execution of the critical path of
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Emerging	
  scale-­‐free	
  programming	
  models	
  

•  Annotate	
  task	
  memory	
  
footprint	
  and	
  side-­‐effect	
  

input (rd-only), 
inout (rw), output 
(wr-only)!

•  Discover	
  task	
  dependences	
  
at	
  run-­‐;me	
  
–  dynamically	
  extract	
  task	
  
parallelism	
  

–  schedule	
  tasks	
  out-­‐of-­‐order	
  
–  E.g.	
  “depend”	
  clause	
  in	
  
OpenMP	
  4.0	
  RC2	
  (March	
  
2013)	
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and multiGPU systems that can enable applications to fully exploit the power
that each of the hybrid components o↵ers.

4.1 Hybridization of DLA algorithms

We split the computation into sub-tasks and schedule their execution over the
system’s hybrid components. The splitting itself is simple, as it is based on split-
ting BLAS operations. The challenges are choosing the granularity (and shape)
of the splitting and the subsequent scheduling of the sub-tasks. It is desired
that the splitting and scheduling (1) allow for asynchronous execution and load
balance among the hybrid components, and (2) harness the strengths of the com-
ponents of a hybrid architecture by properly matching them to algorithmic/task
requirements. We call this process hybridization of DLA algorithms. We have
developed hybrid algorithms for both one-sided [15, 16] and two-sided factor-
izations [6]. Those implementations have been released in the current MAGMA
library [17]. The task granularity is one of the key for an e�cient and balanced
execution. It is parameterized and tuned empirically at software installation time
[18].

4.2 Scheduling of hybrid DLA algorithms

The scheduling on a parallel machine is crucial for the e�cient execution of an
algorithm. In general, we aim to schedule the execution of the critical path of
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BeJer	
  concurrency	
  control	
  saves	
  energy	
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cilities to them for tracking inter-task dependences. Also,
automatic memory management is applied to versioned ob-
jects to break write-after-read dependences. Versioned vari-
ables may be used as procedure arguments provided they are
cast to type indep, outdep or inoutdep, which describes
side e↵ects of reading, writing or both. The spawn keyword
indicates that calling a task may occur in parallel with the
continuation of the calling procedure, as in Cilk. The sync
keyword blocks a procedure until all children have finished
execution. The loop in Figure 1 corresponds to a two-stage
pipeline where instances of the produce stage may execute
in parallel as there are no dependences between those in-
stances, while instances of the consume stage execute strictly
in order due to the dependence on the inoutdep argument.

Task dataflow is an intuitive programming model where
the pipeline pattern emerges on-the-fly as a side-e↵ect of
the code structure, rather than being designed-in. However,
task dataflow has two limitations with respect to pipeline
parallelism: (i) pipelines must be su�ciently coarse-grained
as every stage invocation is modeled as a separately sched-
uled task, and (ii) each pipeline stage consumes a fixed num-
ber of elements from its predecessor and produces a fixed
number of output elements [6]. This paper will address
both shortcomings by introducing hyperqueues, a program-
ming abstraction of queues for a task based programming
language. Hyperqueues are deterministic and allow the con-
struction of scale-free pipeline parallel programs.

Hyperqueues share commonalities with Cilk++ hyperob-
jects, specifically with reducers [9]. Reducers are special pro-
gram variables that support reduction operations, i.e., they
are identified by a type, an identity element and an asso-
ciative reduction operation. A common example is addition
over integers, but also appending to a list is an associative
operation. The latter was, in fact, the main motivation for
the development of reducers [9]. Reduction operations can
be parallelized by creating duplicates of the reduction vari-
able, called views, which are private to a task. As views are
private, they are accessed without races. When tasks com-
plete, the views are reduced to a single value in such a way
that program order is respected. Moreover, Cilk++ uses a
“special” optimization to reduce views only on task steals, as
opposed to on all spawned tasks. Hyperqueues build on this
property of reducers to perform push operations in parallel
while retaining determinism.

However, hyperqueues also allow concurrent push and pop
operations and are di↵erent in this respect from Cilk++
hyperobjects. To support this behavior, hyperqueues require
a distinct implementation. Views are no longer private but
are shared between a producing task and a consuming task.
This paper shows how to design shared views that are data
race free and how to ensure deterministic parallelism for
programs utilizing hyperqueues.

Using hyperqueues, we parallelize several benchmarks with
less programming e↵ort than using POSIX threads or Thread-
ing Building Blocks (TBB) because synchronization is hid-
den in the runtime system and because the programming
language does not impose a stringent format, as TBB does.
Moreover, the hyperqueue version is scale-free and obtains
the same or up to 30% better performance. It also out-
performs task dataflow languages like [6] because the latter
cannot capture varying numbers of inputs and outputs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the programming model. Section 3 discusses

1 struct data { ... };
2 void consumer(popdep<data> queue) {
3 while( !queue.empty() ) {
4 data d = queue.pop();
5 // ... operate on data ...

6 }
7 }
8 void producer(pushdep<data> queue, int start, int end) {
9 if ( end�start <= 10 ) {

10 for( int n=start; n < end; ++n ) {
11 data d = f(n);
12 queue.push(d);
13 }
14 } else {
15 spawn producer(queue, start , ( start +end)/2);
16 spawn producer(queue, (start+end)/2, end);
17 sync;
18 }
19 }
20 void pipeline ( int total ) {
21 hyperqueue<data> queue;
22 spawn producer((pushdep<data>)queue, 0, total);
23 spawn consumer((popdep<data>)queue);
24 sync;
25 }
Figure 2: The simple pipeline-parallel program of
Figure 1 expressed with the hyperqueue.

the internal representation of hyperqueues in the runtime
system and views. Section 4 discusses how the runtime sys-
tem merges views. Then, Section 5 presents programming
idioms. We present an experimental evaluation in Section 6.
Finally, Section 7 discusses related work and Section 8 con-
cludes this paper.

2. PROGRAMMING MODEL

2.1 The Hyperqueue Abstraction of Queues
Hyperqueues are a programming abstraction for queues.

A queue is an ordered sequence of values. Values are added
to the tail of the sequence using a push method. Values are
removed from the head of the sequence using a pop method.
We define a hyperqueue as a special object in our pro-

gramming language that models a single-producer, single-
consumer queue. Its implementation allows tasks to concur-
rently push and pop values without breaking the semantics
of a single-producer, single-consumer queue, and without
breaking the serializability of the parallel program.
Hyperqueues are defined as variables of type hyperqueue,

which takes a type parameter to describe the type of the val-
ues stored in the queue. Hyperqueues may be passed to pro-
cedures provided they are cast to a type that describes the
access mode of the procedure. This type can be pushdep,
popdep or pushpopdep, to indicate that the spawned pro-
cedure may only push values on the queue, that it may only
pop values from the queue, or that it may do both. A task
with push access mode is not required to push any values,
nor is a task with pop access mode required to pop all val-
ues from the queue. A hyperqueue may be destroyed with
values still inside.
A simple 2-stage pipeline using the hyperqueue is shown in

Figure 2. The procedure pipeline at line 20 creates a hyper-

Swan	
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  parallelism	
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  pipelines	
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(b) Positioning of hyperqueues 

1 void Fragment( pushdep<chunk t ⇤>write queue ) {
2 while( more coarse fragments ) {
3 chunk t ⇤ chunk = ...;
4 { // Set up inner pipeline with local queue

5 hyperqueue<chunk t⇤> ⇤ q
6 = new hyperqueue<chunk t ⇤>;
7 spawn FragmentRefine(
8 chunk, (pushdep<chunk t ⇤>)⇤q );
9 spawn DeduplicateAndCompress(

10 (popdep<chunk t ⇤>)⇤q,
11 (pushdep<chunk t ⇤>)write queue );
12 }
13 }
14 sync;
15 }
16 int main() {
17 hyperqueue<chunk t⇤> write queue;
18 spawn Fragment( (pushdep<chunk t⇤>)write queue );
19 spawn Output( (popdep<chunk t⇤>)write queue );
20 sync;
21 }

(c) Hyperqueue implementation of dedup.

Figure 10: Alternative implementation choices for dedup. The graphics (a) and (b) show dynamic instantia-
tions of each pipeline stage, how they are grouped and where collections of data elements are used. Dashed
lines indicate instances of the inner pipeline. (c) Sketch of hyperqueue code according to (b).

Figure 10 (a) shows the dynamic instantiations of all
pipeline stages. Two large chunks have been found, where
the first is further split in three small chunks and the latter
is split two-ways. This graphic demonstrates a shortcoming
of the nested pipeline approach: all the small chunks for a
large chunk must be completed and gathered on a list be-
fore the output stage can proceed. This puts an important
limit to scalability, as the number of small chunks per in-
ner pipeline is typically 500-600 and may run up to 65537,
potentially resulting in long and skewed delays.

Hyperqueues allow consuming elements concurrently to
pushes, removing the wait times of the output stage un-
til large chunks have been fully processed as in the case of
nested pipelines. Moreover, like Cilk++ list reducers, hyper-
queues allow us to construct parts of the list concurrently
and merge list segments as appropriate. This way, all nested
pipelines can push elements on the same hyperqueue and the
write actions become synchronized and ordered between in-
vocations of the nested pipeline. Finally, hyperqueues can be
used directly as a drop-in replacement for lists, as they sup-
port the required push and pop operations (Figure 10 (b)).

Our hyperqueue implementation inserts a local hyperqueue
between the FragmentRefine stage and the Deduplication
stage. Also, all instances of the Deduplication and Com-
press stages that correspond to the same nested pipeline
(large chunk) are merged into a single sequential task. This
design was chosen to coarsen the tasks and reduce dynamic
scheduling overhead (which is absent in the pthreads imple-
mentation). Ample parallelism remains in the program.

Our formulation of dedup follows the original sequential
algorithm, which greatly a↵ects programmer productivity.
Figure 10 (c) shows a sketch, where the main procedure
spawns two tasks Fragment and Output. Fragment calls all
but the output stage in a recursive manner: whenever a
large chunk is constructed, a nested pipeline is created using
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Figure 11: Dedup speedup with various program-
ming models.

two tasks that communicate through a local hyperqueue.
Completed small chunks are produced on the write queue.
In contrast, the TBB version of dedup requires significant
restructuring of the code in order to match the structure
imposed by TBB.
Note that the hyperqueue enforces dependences across

procedure boundaries. This is an e↵ect that is hard to
achieve in Swan, where dataflow dependences can exist only
within the scope of a procedure.
Figure 11 shows speedup for dedup in the pthreads, TBB

and Swan programming models. While Reed et al demon-
strated improved performance of their TBB implementation
relative to the pthreads implementation in PARSEC 2.1 [22],
our evaluation using PARSEC 3.0 shows that the TBB im-
plementation is slower than the pthreads implementation.
The Swan implementation with hyperqueues outperforms
the pthread version by at least 12% and up to 30% in the re-
gion of 6-8 threads. The hyperqueue implementation looses
some of its advantage for 22 threads and higher due to task
granularity and locality issues.
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Figure: EPI while traversing OI of a
L3 Cache sensitive workload.

Observations
1 OI Counts L3 accesses

instead of memory ones.

2 L3 accesses also degrade
energy e�ciency for high OI.

3 Cache Hierarcy consumes up
to 50% of the total
energy.

Ioannis Manousakis and Dimitrios S. Nikolopoulos Measuring and Modeling Energy with BTL

[SBAC-­‐PAD’12]	
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Results - Comparison

Workload OI EPI Against L3

L3 High 3.9⇥�9 1
Throughput High 1.18⇥�8 3.02
Latency High 5.8⇥�8 14.9

L3 Low 2.4⇥�9 1
Throughput Low 4.0⇥�9 1.6
Latency Low 3.6⇥�8 15

Table: EPI comparison of throughput, latency and L3 sensitive workloads.

Ioannis Manousakis and Dimitrios S. Nikolopoulos Measuring and Modeling Energy with BTL
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•  Epoch	
  quotas:	
  cache	
  space	
  alloca;on	
  per	
  task	
  (best-­‐effort)	
  
–  SW	
  declares	
  quota	
  from	
  task	
  footprint	
  size	
  (ECM	
  converts	
  to	
  ways)	
  
–  when	
  current	
  and	
  next	
  compete	
  è	
  guarantee	
  minimum	
  alloca;on	
  

•  Replacement:	
  computes	
  current	
  &	
  next	
  occupancy	
  (per-­‐set)	
  
–  replace	
  from	
  reques;ng	
  epoch	
  when	
  set	
  is	
  full	
  (e.g.	
  use	
  LRU	
  bits)	
  
–  throJle	
  EBP	
  (prefetching)	
  when	
  set	
  is	
  full	
  and	
  epoch	
  exceeded	
  quota.	
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  Energy	
  and	
  the	
  programmer	
  
•  Should	
  programmers	
  go	
  back	
  to	
  half	
  a	
  century-­‐-­‐old	
  

principles?	
  
–  Eliminate	
  waste	
  
–  Much	
  of	
  the	
  programming	
  we	
  do	
  already	
  does	
  this	
  

•  Load	
  balancing	
  
•  Communica;on	
  or	
  synchroniza;on	
  removal	
  

•  	
  Scale-­‐free	
  programming	
  models	
  can	
  help	
  programmers	
  
achieve	
  this	
  
–  Programmer	
  expresses	
  exact	
  parallelism	
  and	
  locality	
  paJerns	
  
–  Run;me	
  system	
  maps	
  to	
  cores,	
  memories	
  and	
  interconnect	
  so	
  
as	
  to	
  avoid	
  waste	
  

–  Component-­‐level	
  power	
  management	
  further	
  minimizes	
  waste	
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The	
  “Lernaia	
  Hydra”	
  
•  Power	
  instrumenta;on	
  	
  is	
  inaccurate,	
  intrusive,	
  coarse-­‐grain,…	
  

–  SoGware	
  is	
  at	
  the	
  mercy	
  of	
  hardware	
  (PMCs,	
  sensors,	
  voltage	
  
regulators,	
  everything	
  machine-­‐specific,…)	
  

•  No	
  soGware	
  standards	
  for	
  power	
  measurement	
  and	
  management	
  
–  How	
  would	
  power	
  knobs	
  make	
  it	
  into	
  MPI,	
  OpenMP,	
  Cilk,	
  PGAS,	
  or	
  

even	
  mainstream	
  languages?	
  
•  What	
  if	
  a	
  power	
  cap	
  is	
  imposed?	
  

–  And	
  violated?	
  
•  Riding	
  the	
  technology	
  curve	
  is	
  dangerous	
  

–  Low	
  voltage	
  may	
  become	
  sub-­‐threshold	
  voltage	
  
–  Subthreshold	
  voltage	
  will	
  increase	
  soG	
  error	
  rate	
  
–  SoG	
  errors	
  will	
  cause	
  failures	
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Looking	
  forward:	
  SCoRPiO	
  project	
  
•  Compu;ng	
  at	
  the	
  

limits	
  of	
  energy	
  and	
  
reliability	
  
–  Components	
  with	
  sub-­‐

threshold	
  voltage	
  	
  

•  Embrace	
  uncertainty!	
  
–  Not	
  all	
  bits	
  in	
  memory	
  

and	
  registers	
  are	
  equally	
  
cri;cal	
  	
  

–  Applica;on-­‐specific	
  
quality	
  control	
  

•  Minimize	
  power	
  by	
  
scaling	
  gracefully	
  
under	
  hardware	
  errors	
  	
  
–  Scale-­‐free	
  parallel	
  

programming	
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